
Tree and binary tree

Leaf is a node which does not have children.

Siblings are children of the same parent.

The tree is ordered if the order of siblings

(from left to right) has set by a special rule.

The root is on level 0, its children on level 1,

etc.

Number of edges in the path from a leaf

located on the lowest level to the root is the

height of tree.

In binary tree the number of children can be

0, 1 or 2.

A tree is a collection of nodes. This collection may be empty, contain only one (root) node or

root node with connected to it branches. But the branches are also trees.

This is the recursive definition of tree.

Binary search tree (1)

Let us have keys 58, 37, 75, 61, 25, 15, 68,

30, 28, 32, 36.

Compare the new key with the key

associated with the current node. Less – go

to left. Greater – go to right. If you have

reached an empty place, build the new

node.

Binary search tree (2)

struct node

{

 void *pRecord = nullptr; // pointer to the associated record

 node *pLeft = nullptr, // pointer to the left child

 *pRight = nullptr; // pointer to the right child

 };

node *pTree = nullptr; // create empty tree

Building: compare the new key with the key associated with the current node. Less –

go to left. Greater – go to right. If pLeft or pRight is nullptr, create the new node.

Searching: compare the searched key with the key associated with the current node.

Identical – you have got it. Less – go to left. Greater – go to right. If pLeft or pRight

is nullptr, the needed record does not exist.

Binary search tree (3)

void *TreeSearch(node *pTree, void *pKey, int (*pCompare)(const void *, const void *))

{ // recursive function for searching from binary tree

 int i;

 if (!pTree || !pKey)

 return nullptr;

 if (!(i = (pCompare) (pKey, pTree->pRecord)))

 return pTree->pRecord; // found

 else if (i < 0)

 return TreeSearch(pTree->pLeft, pKey, pCompare); // continue in left branch

 else

 return TreeSearch(pTree->pRight, pKey, pCompare); // continue in right branch

}

pCompare is a pointer to function (will be discussed later in this course). It may point to

the following function:

int CompareKeys(const void *pKey, const void *pRecord)

{

 return strcmp((const char *)pKey, ((const PERSON *)pRecord)->pName);

}

Example:

Person *pStudent = (Person *)TreeSearch(pTree, "John Smith", CompareKeys);

Binary search tree (4)

void *TreeSearch(node *pTree, void *pKey, int (*pCompare)(const void *, const void *))

{ // searching from binary tree without recursion

 int i;

 node *p = pTree;

 if (!pTree || !pKey)

 return nullptr;

 for (; p;)

 {

 if (!(i = (pCompare) (pKey, p->pRecord)) < 0) // call by pointer, discussed later

 p= p->pLeft; // go to left

 else if (i > 0)

 p = p->pRight; // go to right

 else

 return p->pRecord; // got it

 }

 return nullptr; // not found

}

Binary search tree (5)

node *InsertNode(node *pTree, void *pNewRecord,

 int (*pCompare)(const void *, const void *))

{ // inserting a new node without recursion

 node *pNew = new node; // create new node

 pNew->pRecord = pNewRecord;

 if (!pTree)

 return pNew; // the tree was empty, the new node is the root

 for (node *p = pTree; true;) {

 if (!((pCompare) (pNewRecord, p->pRecord) < 0) {

 if (!p->pLeft) { // found an empty place

 p->pLeft = pNew; // connect to the tree

 return pTree; // ready

 }

 else

 p = p->pLeft; // move left

 }

 else {

 // similar code for pRight

 }

 }

 }

Binary search tree (6)

There are no problems to remove a leaf node.

Also, it is easy to remove a parent

node with one child.

Binary search tree (7)

When a parent with two children has been removed, we

get two branches not connected to eeach other. Any key

in the right branch is greater than keys from the left

branch:

To find the node associated with the smallest key

move left until possible. To find the node associated

with the biggest key move right until possible.

Find the minimum of the right branch. Then connect the root of left branch to it as its

left child.

Binary search tree (8)

The tree traversal is the process of visiting each node exactly

once. Actually, the traversal is the linearization of tree. The

traversal is a recursive process.

Postorder travesal (left – right - root): g, b, d, e, h, i, f, c, a

Preorder traversal (root – left- right): a, b, d, g, c, e, f, h, i

Inorder traversal (left – root – right): d, g, b, a, e, c, h, f, i

Level-order traversal: a, b, c, d, e, f, g, h, i

Postorder travesal (left – right - root): 15, 28, 32, 30, 25, 37, 68,

61, 75, 58

Preorder traversal (root – left- right): 58, 37, 25, 15, 30, 28, 32,

75, 61, 68

Inorder traversal (left – root – right): 15, 25, 28, 30, 32, 37, 58,

61, 68, 75. The list is sorted.

Level-order traversal: 58, 37, 75, 25, 61, 15, 30, 68, 28, 32

See also https://builtin.com/software-engineering-

perspectives/tree-traversal#4

https://builtin.com/software-engineering-perspectives/tree-traversal#4
https://builtin.com/software-engineering-perspectives/tree-traversal#4

Binary search tree (9)

void InorderTraversal(node *pTree, void (*pProcess(node *))

{ // recursive inorder traversal, pProcess points to function that does something with node

 // (for example prints the contents of associated record)

 if (pTree)

 {

 InorderTraversal(pTree->pLeft, pProcess)

 (pProcess)(pTree);

 InorderTraversal(pTree->pRight, pProcess);

 }

}

void DestroyTree(node *pTree)

{ // recursive postorder traversal for erasing the tree

 if (pTree)

 {

 DestroyTree(pTree->pLeft);

 DestroyTree(pTree->pRight);

 free(pTree);

 }

}

Binary search tree (10)

A multiway tree can be reduced to binary tree:

struct node

{

 void *pRecord = nullptr;

 node *pChild = nullptr, // pointer to leftmost child

 *pSibling = nullptr; // pointer to next right sibling

};

Binary search tree (11)

Suppose we have 3 records. Depending on their arrival order we may get one of the

following trees:

The look like of a tree is occasional. In the worst case the tree is actually a linear list. The

best case is the perfectly balanced tree in which the heights of the both subtrees proceeding

from any parent node is equal:

However, the perfectly balanced tree can be built only if the number of nodes n = 2k – 1

(k is an integer). For this tree h(n) < log2 (n + 1).

For random trees:

log2 (n + 1) < h(n) < n if n ≠ 2k – 1

log2 (n + 1) < h(n) < n if n = 2k – 1

h(n) is the random height. The number of tests in searching is T(n) < h(n).

AVL tree (1)

An AVL tree (Adelson-Velski & Landis, Kyiv 1962) is a binary tree in which the difference

of heights of subtrees proceeding from any parent node is zero or one. The balance

coefficient of a node is calculated as the height of right subtree minus the height of left

subtree and it can be +1, 0 or -1:

In AVL tree:

T(n) < 1.4404 log2 (n+2) – 0.328.

If n > 500:

 () ≈ 2(n) - 0.86

To build an AVL tree, after insertion of a new node we must check the balance coeffcients.

If some of them is +2 or -2, we need to modify the tree using rotation algorithms. See:

http://www.geeksforgeeks.org/avl-tree-set-1-insertion

http://www.geeksforgeeks.org/avl-tree-set-1-deletion

Those pages present also the corresponding code for C/C++functions.

http://www.geeksforgeeks.org/avl-tree-set-1-insertion
http://www.geeksforgeeks.org/avl-tree-set-1-deletion

AVL tree (2)

New node into branch C

New node into branch A

A, B and C are branches, h is the height of branch.

AVL tree (3)

New node into branch X, after expanding into branch B or C.

AVL tree (4)

New node into branch X, after expanding into branch B or C.

AVL tree (5)

Example: let us have keys 58, 37, 75, 61, 25, 15, 68. The first 5 nodes are inserted without

problems. After adding the node for key 15 our tree is not an AVL tree and we need to use

rotation presented on slide AVL tree (2):

To restore the balance after adding node for key 68 we need to use two rotations presented

on slide AVL tree(4):

Splay tree

In splay trees if a node is found, it is pushed to the root by a series of rotations. A new node is

inserted into tree as usual but right after that it is also pushed to the root. Thus, after some

time the nodes that are queried more frequently will be automatically concentrated on the

upper levels. For example, let us have keys 58, 37, 75, 61, 25, 15:

See:

https://www.geeksforgeeks.org/spaly-tee-set-1-insert

https://www.geeksforgeeks.org/spaly-tree-2-insert-delete

https://www.geeksforgeeks.org/spaly-tee-set-1-insert
https://www.geeksforgeeks.org/spaly-tree-2-insert-delete

Bitwise operations (1)

Operations like addition, comparison, logical AND, etc. operate with bytes. C/C++ has

also operations for handling bits. The operands of bitwise operations must be integers

(char, int, unsigned int, etc.).

Bitwise negation ~ converts each bit 1 to bit 0 and each bit 0 to bit 1. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = ~c1; // get 0101 1010

printf("%u\n", (unsigned int)c2); // prints 90

Remember that there is also negation ! (logical NOT) that converts zero (FALSE) to 1

(TRUE) and any non-zero (TRUE) to 0 (FALSE).

Bitwise AND & performs bit-by-bit comparison of bits. If the both bits are 1, the

resulting bit is also 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 & c2; // gets 0010 0000

printf("%u\n", (unsigned int)c3); // prints 32

Remember that there is also logical AND && in which TRUE && TRUE = TRUE and

all the other combinations produce FALSE.

Bitwise operations (2)

Bitwise OR | performs bit-by-bit comparison of bits. If the both bits are not 0, the resulting

bit is 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 | c2; // gets 1010 0101

printf("%u\n", (unsigned int)c3); // prints 165

Remember that there is also logical OR || in which FALSE || FALSE = FALSE and all the

other combinations produce TRUE.

Bitwise exclusive OR ^ (XOR) performs bit-by-bit comparison of bits. If the both bits are

different, the resulting bit is 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 ^ c2; // gets 1000 0101

printf("%u\n", (unsigned int)c3); // prints 133

Bitwise operations (3)

Applying bits instead of bytes we can compress data. Suppose we need to describe

properties of a file:

• reading allowed or not alllowed

• writing allowed or not allowed

• on open, if not found, create; if found inform about error

• on open, if found, delete the existing contents or keep it

• …………………………

Suppose there is no more that 8 properties. Then we may pack this information into one

byte:

• If bit 7 is 1, reading is allowed; if 0, not allowed

• If bit 6 is 1, writing is allowed; if 0 not, not allowed

• If bit 5 is 1, create the file if not found; if 0 consider that file open operation failed

• If bit 4 is 1, destroy the contents of existing files; if 0 keep it

• ………………………………………………………….

Here bit 7 is the highest (leftmost) bit.

So, the function opening file does not need 9 parameters (filename and properties). 2 is

enough – the name of file and properties packed into a variable of type unsigned char.

Bitwise operations (4)
Now suppose we have

unsigned char properties = 0;

and we want to open file both for reading and writing. For that we need to set bits 7 and 6

to 1:

properties = properties | 0xC0; // we may write also properties |= 0xC0;

// 0000 0000 | 1100 0000 gives us 1100 0000

Next we want to set that if the file exists, its contents must be destroyed:

properties |= 0x10; // 1100 0000 | 0001 0000 = 1101 0000

So, if we want to set a bit in the target variable to 1, we must bitwise OR the target with a

constant in which this bit is 1 and all the others are 0. If the bit in the target variable

already was 1, it keeps its value. If it was 0, it becomes 1.

The function opening the file must analyse the properties, i.e. to clarify which bits are 0

and which are 1. It can be done with bitwise AND, for example:

if (properties & 0x10)

{ // we get 0001 0000 that is TRUE or 0000 0000 that is FALSE

 ………………. // destroy file contents

}

So, if we need to know is a bit in the target variable 0 or 1, we must bitwise AND the

target with a constant in which this bit is 1 and all the others are 0.

Bitwise operations (5)

If we want to set a bit in the target variable to 0, we must bitwise AND the target with a

constant in which this bit is 0 and all the others are 1. If the bit in the target variable

already was 0, it keeps its value. If it was 1, it becomes 0. Example:

unsigned char target = 0xD0; // 1101 0000

unsigned char mask = 0xEF; // 1110 1111

target = target & mask; // 1100 0000

or

target &= mask;

Toggling a bit means that if it was 1, it must be converted to 0 and if it was 0, it must be

converted to 1. For that we have to bitwise XOR the target with a constant in which this bit

is 1 and all the others are 0. Example:

unsigned char target = 0xD0; // 1101 0000

Toggle bit 4:

unsigned char mask = 0x10; // 0001 0000

target = target ^ mask; // 1100 0000

Toggle once more:

target = target ^ mask; // 1101 0000

or

target ^= mask;

Bitwise operations (6)

Binary bitwise shifting left << operation shifts all the bits of the value of left operand to

the left by the number of places given by the right operand. The vacated places are filled

with zeroes. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = c1 << 5; // gets 1010 0000, the higher bits were lost

printf("%u\n", (unsigned int)c2); // prints 160

unsigned char c3 = c1 << 8; // gets 0000 00000

printf("%u\n", (unsigned int)c3); // prints 0

Binary bitwise shifting right >> operation shifts all the bits of the value of left operand to

the right by the number of places given by the right operand. The vacated places are filled

with zeroes. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = c1 >> 5; // gets 0000 0101, the lower bits were lost

printf("%u\n", (unsigned int)c2); // prints 5

unsigned char c3 = c1 >> 8; // gets 0000 00000

printf("%u\n", (unsigned int)c3); // prints 0

Shifting of negative signed values leads to unpredictable results.

Bitwise operations (7)

Example:

unsigned int color; // the higher byte is not used, the following bytes present the intensity

 // of red, green and blue components. For example 0x00FF0000

 // presents the most intensive red, 0x00FF00FF the most intensive

 // magenta, 0x00007F00 dark green

unsigned char mask = 0xFF;

unsigned int red = (color >> 16) & mask;

unsigned int green = (color >> 8) & mask;

unsigned int blue = color & mask;

If the color is 0x00AA0000 (dark red) or 0000 0000 1010 1010 0000 0000 0000 0000,

then shifting right 16 positions gives us 0000 0000 0000 0000 0000 0000 1010 1010.

Before bitwise AND mask is automatically converted to unsigned int, so we get

 0000 0000 0000 0000 0000 0000 1010 1010

&

 0000 0000 0000 0000 0000 0000 1111 1111

 0000 0000 0000 0000 0000 0000 1010 1010 // intensity of red

Bitwise operations (8)

If the color is 0x00AA8000 (light brown) or 0000 0000 1010 1010 1000 0000 0000 0000,

then shifting right 8 positions gives us 0000 0000 0000 0000 1010 1010 1000 0000.

Before bitwise AND mask is automatically converted to unsigned int, so we get

 0000 0000 0000 0000 1010 1010 1000 0000

&

 0000 0000 0000 0000 0000 0000 1111 1111

 0000 0000 0000 0000 0000 0000 1000 0000 // intensity of green

Bit fields (1)

Bit fields is the alternative way to handle separate bits. Suppose we want to store the

parameters of font for a section of text. The font may bold, italic, underlined or double

underlined or any combination of them. We may use a variable of type unsigned char and

agree that bit 3 (7 is the highest) is 1 if the text is bold and 0, if not. Similarly bit 2 is 1 if

the text is in italic and 0 if not, etc. But it is unpleasant to remember the meaning of each

bit. The corresponding bit field may be as follows:

struct {

 unsigned char bold: 1;

 unsigned char italics: 1;

 unsigned char single_underlined: 1;

 unsigned char double_underlined: 1;

} font_par;

Now we can handle each bit as a member of struct, for example:

font_par.bold = 0;

font_par.italics = 1;

font_par. single_underlined = 1;

font_par.double_underlined = 0;

Description unsigned char italics : 1 tells that the type of member italics is unsigned char

but one bit is enough for storing its value.

Bit fields (2)

Number of bits for a bit field member may be greater than 1. For example in a date day

cannot exceed 31 (0001 1111), month cannot exceed 12 (0000 1100) and the year cannot

exceed 2020 (0111 1110 0100). So to economize the memory usage we can define

struct Date {

unsigned char day : 5;

unsigned char month : 4;

unsigned short int year : 11;

};

Bit field members can be integers, but not arrays or pointers.

Digital search tree1 00001
19 10011
5 00101
18 10010
3 00011
8 01000
9 01001
14 01110
7 00111
24 11000
13 01101
16 10000
12 01100

0-bit: go to left, 1-bit: goto right. To locate a node read bits from left to

right. When you reach an empty place, put the node there.

If the keys (integers) do not exceed 2n, the height of tree cannot exceed n +1. Thus, if the keys

are shot int, the tree can contain max 65536 records and its height cannot exceed 17, i.e. the

digital search tree is rather well balanced.

On searching you must move according to the bits but on each node the complete test is

necessary.

Binary trie (1)1 00001
19 10011
5 00101
18 10010
3 00011
8 01000
9 01001
14 01110
7 00111
24 11000
13 01101
16 10000
12 01100

Retrieve.

The records are in leaves (rectangles). 0-bit: go to left, 1-bit: goto right. To locate a leaf read

bits from left to right. When you have reached an already existing leaf, take the next bit

associated with this leaf and push the leaf down to the next level.

Binary trie (2)1 00001
19 10011
5 00101
18 10010
3 00011
8 01000
9 01001
14 01110
7 00111
24 11000
13 01101
16 10000
12 01100

If the keys (integers) do not exceed 2n, the height of trie (without leaves)

cannot exceed n.

On searching you must move according to the bits but on the leaf the complete

test is necessary.

Here we deal with tries for storing records in which the keys are integers. Tries for

for storing records in which the keys are strings are out of scope of this course. Read

https://www.geeksforgeeks.org/trie-insert-and-search.

https://www.geeksforgeeks.org/trie-insert-and-search

B-tree (1)

 … m , … m-1 records

m/ … m , m/ - … m-1 records

no children, m/2 - … m-1 records

branch with keys k < a branch with keys k > g

branch with a < k < b branch with keys f < k < g

B-tree is always perfectly balanced. Records in a node are sorted. Mostly on disks. The

size of node should be as large as the block on disk.

B-tree (2)

B-tree of order 4 is called as 2-3-4 tree and can be comfortably used in memory.

Let us have keys 15, 87, 30, 13, 72, 20, 39, 41, 60, 38, 32, 90, 10, 51, 67, 42.

First fill the root (keys are in sorted order):

The root is full, split it:

New records must be inserted

only into leaves:

 If the node into which you want

to insert a new record is full,

split it. The record in the

middle moves into the parent

node:

B-tree (3)

15, 87, 30, 13, 72, 20, 39, 41, 60, 38, 32, 90, 10, 51, 67, 42

B-tree (4)

15, 87, 30, 13, 72, 20, 39, 41, 60, 38, 32, 90, 10, 51, 67, 42

B-tree (5)

We can without problems

remove records from

leaves containing two or

three objects. But empty

nodes are not allowed.

If the empty node has

siblings containing two

or three records, move

the smallest from the

right sibling (or biggest

from the left sibling) to

the parent. And move

the record in the parent

separating the empty

node and the sibling

that lost one of its

records into the empty

node.

B-tree (6)

If the both esiblings of

empty node contain only

one record, the empty node

must be removed. From its

parent the biggest or the

smallesr record moves

down to the child.

B-tree (7)

B-tree (8)

To remove from node

that is not a leaf, find

the record that in

linear sorted list

follows or precedes

the record we want to

remove. For that go

down keeping all

time to left or to right

until you reach the

leaf. Then move the

found record to the

place that has become

empty. Actually you

have provided the

removing from leaf.

More about B-trees read:

https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/

https://www.geeksforgeeks.org/b-tree-set-1-insert-2/

https://www.geeksforgeeks.org/b-tree-set-3delete/

Those pages present also the corresponding code for C/C++functions.

https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/b-tree-set-1-insert-2/
https://www.geeksforgeeks.org/b-tree-set-3delete/

Red-black tree (1)

Nodes of 2-3-4 tree

can be replaced

with fragments of

binary trees.

The result is well-balanced

binary tree called as red-

black tree.

Red-black tree (2)

In red-black tree:

 () ≤ * 2n+2.

If n is rather large:

 () ≈ . * 2n

The red-black trees are as good as AVL trees.

Of course, to build a red-black tree we must not first build the 2-3-4 tree. Algortihms for

building and handling a red-black tree from scratch are on pages:

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/

https://www.geeksforgeeks.org/red-black-tree-set-2-insert/

https://www.geeksforgeeks.org/c-program-red-black-tree-insertion/

https://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/

Those pages present also the corresponding code for C/C++functions.

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/red-black-tree-set-2-insert/
https://www.geeksforgeeks.org/c-program-red-black-tree-insertion/
https://www.geeksforgeeks.org/red-black-tree-set-3-delete-2/

Priority queue

In simple queue (FIFO) we can remove only the first record. The new records are appended

to the end of queue.

In priority queue (called also as heap) each record has its priority. Similarly to the keys, the

priority is something we can retrieve from a record directly or after some calculations. Also,

there must be algorithms to determine are the two priorities equal and if not, which of them

is larger. The records in priority queue can be located randomly (i.e. without ordering), but

only the record with highest priority can be removed.

Consequently, data structures implementing the priority queue must ensure that the highest

priority record can be found as quickly as possible.

In ordered binary tree k2 < k1 and k3 > k1, consequently k3 > k2

In heap-ordered binary tree k1 > k2 and k1 > k3, relation between k2 and

k3 may be any. Such trees are the most suitable for implementing priority

queues. The record with highest priority is associated with the root node.

Leftist tree (1)

A leftist tree has two types of nodes:

• the inner nodes have two children (here black).

• the outer node has one child or no children at all (here red).

The rank of an inner node (here blue) is the length of shortest path

from this node to an outer node. The rank of an outer node is zero.

The leftist tree is:

• heap-ordered.

• for each inner node the rank of left child is greater or equal with

the rank of right child.

Let us have priorities 58, 15, 37, 28, 36, 32, 61, 25, 30, 18, 5.

 First create two subtrees. Let us call them A and B.

The priority of root in A must be greater than the

priority of root B. Then merge them, setting the B as

the right branch of A.

Leftist tree (2)

Here subtree A already has right

branch. In that case we must merge

the right branch with B (i.e. the A is

now the right branch). After merging

recalculate the ranks. As now the rank

of left child is less than the rank of

right child, exchange the branches.

58, 15, 37, 28, 36, 32, 61, 25, 30, 18, 5.

Now subtree with root 61 is the A

and the complete B becomes its

right branch. The rule of ranks is

violated, so we need to exchange

the branches.

Leftist tree (3)

58, 15, 37, 28, 36, 32, 61, 25, 30, 18, 5.

 A already has right branch. We must

merge B with the right branch of A,

but as 30 > 25, B becomes to A and

A is the single node 25.

Subtree B is the single node 5.

The right branch of A has also its

right branch: single node 25. So

we need to merge two single

nodes: 25 as A and 5 as B.

Leftist tree (4)

 The node with highest priority is the root. After removing

the tree breaks into two subtrees that we need to merge

together.

More about leftist tree see on page:

https://www.geeksforgeeks.org/leftist-tree-leftist-heap/

This page presents also the corresponding code for C/C++functions.

https://www.geeksforgeeks.org/leftist-tree-leftist-heap/

Hashing (1)

The general idea of hashing is as follows:

1. Let us take an array with length m and fill it with zeroes (or some other objects signalling

that all the positions in the array are empty). This is the hash table.

2. Next take a function h(k). Its arguments must be the keys of records, its output value is an

 m … m-1. Principally, there are no other requirements on h(k) named

as hash function.

3. To store a record into the table calculate the index – output of hash function.

4. To find a record from the table calculate the index and if the got position is not empty,

retrieve the record.

However, there is a serious problem: hash function may produce non-unique output and

therefore several records with different keys may claim the same location. This is the

collision. Consequently, after retrieving the record we must carry on an additional testing.

The main problems of hashing are:

1. How to select the length of table and hash function so that the probability of a collision is

minimal.

2. What to do if the collision has occurred.

The weak point in hashing is that we need to estimate the possible number of records. If the

table is too short, we need also to select a new hash function, i.e. start all the work from

scratch.

Hashing (2)

int k; // key

int m; // length of table

int h = k % m; // the simplest hash function (hashing by division method)

Here m = 2n is a very bad idea. Example:

Let n = 10.

k1 = 2837 = 0xB15 = 1011 0001 0101

k1 % m = 789 = 0x315 = 0011 0001 0101

k2 = 1813 = 0x715 = 0111 0001 0101

k2 % m = 789 = 0x315 = 0011 0001 0101 – collision!

Reason: if we delete with 2n, the remainder is the last n bits of key. The higher bits are not

used.

Recommended: the length of table should be a prime number exceeding the supposed number

of records. About prime numbers see https://www.mathsisfun.com/prime_numbers.html.

https://www.mathsisfun.com/prime_numbers.html

Hashing (3)

int k; // key

int m; // length of table, must be 2n

int h; // result

int i, j1, j2; // auxiliary values

unsiged int kk = k * k, bit = 0x80000000; // auxiliary values

unsigned int mask; // in this constant the lower n bits are ones, the others are 0, for example

 // if n = 10, the mask is 0x3FF = 0000 0000 0000 0000 0000 0011 1111 1111

for (i = 0; !(bit & kk); i++, bit >>1); // find the highest bit that is not zero

j1 = (32 –i–n) / 2;

j2 = 32 – i –n –j1;

h = ((mask<<j2) & kk) >>j2;

Let k = 2837, kk = 8048569 = 0x7ACFB9, n = 8.

0000 0000 0111 1010 1100 1111 1011 1001 // kk, cut out the n middle bits

0000 0000 0000 0000 1111 1111 0000 0000 // mask<<j2

0000 0000 0000 0000 1100 1111 0000 0000 // (mask<<j2) & kk

0000 0000 0000 0000 0000 0000 1100 1111 // h = 207

This is hashing by middle square method.

Hashing (4)

 Collided records are inserted into chains. Advantage:

the length of table is not critically important. Example:

int hash_fun(char *pKey)

{ // key is a string, lenght of table is 26

 return *pKey – 'A';

 }

If the records do not have pNext pointers, introduce

headers:

struct Header

{

 void *pRecord;

 Header *pNext;

};

Resolution of collisions with cellar: the cellar is just a linked list. Insert the record pretending

to cell that is already occupied into cellar. Searching: if the cell is empty, the record is missing.

If not, carry on the complete testing of keys. If the result is positive, you have found your

record. If negative, the record may be in the cellar: apply sequential search.

Hashing (5)

Open addressing: if a cell is already occupied, apply some rules to find an empty cell. The

simplest algorithm of open addressing is the linear probing: just move step by step until

the first empty cell. If the end of table is reached, jump to the beginning and continue.

Suppose that h(k1) = i and h(k2) = i. Due to collision the record with key k2 is inserted into

cell j. Suppose now that h(k3) = j. As cell j is occupied, we have also to find a new cell for

record with key k3. Theoretically it may happen that only the first record is on its right

place. Mostly, once confusion has arisen, it grows rapidly and searching from hash table

becomes similar to sequential searching.

In coalesced hashing each cell has additional field for index. If a cell is inserted into not

relevant cell, the index shows its location. Due to it the searching is faster.

Hashing (6)

In double hashing two hash functions are applied:

int k; // key

int m; // length of the table

int h1, h2; // hash indeces

h1 = hash1(k);

h2= hash2(k);

while (!empty(h1)) h1 = (h1 + h2) % m;

()

 (

()) m

 (

()) m

h2(k) can never return zero and h2(k) % m can never be zero, otherwise we get an

endless loop. This is because:

(a + b) % c = (a % c + b % c) % c and if a < c then a % c =a.

Recommended:

h2(k) = k % (m – 1) +1

h2(k) = k % (m – 2) + 1 (if m is a prime number)

	Slide 1: Tree and binary tree
	Slide 2: Binary search tree (1)
	Slide 3: Binary search tree (2)
	Slide 4: Binary search tree (3)
	Slide 5: Binary search tree (4)
	Slide 6: Binary search tree (5)
	Slide 7: Binary search tree (6)
	Slide 8: Binary search tree (7)
	Slide 9: Binary search tree (8)
	Slide 10: Binary search tree (9)
	Slide 11: Binary search tree (10)
	Slide 12: Binary search tree (11)
	Slide 13: AVL tree (1)
	Slide 14: AVL tree (2)
	Slide 15: AVL tree (3)
	Slide 16: AVL tree (4)
	Slide 17: AVL tree (5)
	Slide 18: Splay tree
	Slide 19: Bitwise operations (1)
	Slide 20: Bitwise operations (2)
	Slide 21: Bitwise operations (3)
	Slide 22: Bitwise operations (4)
	Slide 23: Bitwise operations (5)
	Slide 24: Bitwise operations (6)
	Slide 25: Bitwise operations (7)
	Slide 26: Bitwise operations (8)
	Slide 27: Bit fields (1)
	Slide 28: Bit fields (2)
	Slide 29: Digital search tree
	Slide 30: Binary trie (1)
	Slide 31: Binary trie (2)
	Slide 32: B-tree (1)
	Slide 33: B-tree (2)
	Slide 34: B-tree (3)
	Slide 35: B-tree (4)
	Slide 36: B-tree (5)
	Slide 37: B-tree (6)
	Slide 38: B-tree (7)
	Slide 39: B-tree (8)
	Slide 40: Red-black tree (1)
	Slide 41: Red-black tree (2)
	Slide 42: Priority queue
	Slide 43: Leftist tree (1)
	Slide 44: Leftist tree (2)
	Slide 45: Leftist tree (3)
	Slide 46: Leftist tree (4)
	Slide 47: Hashing (1)
	Slide 48: Hashing (2)
	Slide 49: Hashing (3)
	Slide 50: Hashing (4)
	Slide 51: Hashing (5)
	Slide 52: Hashing (6)

